首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297278篇
  免费   17028篇
  国内免费   8595篇
工业技术   322901篇
  2024年   344篇
  2023年   3233篇
  2022年   4916篇
  2021年   8016篇
  2020年   6113篇
  2019年   5503篇
  2018年   6350篇
  2017年   7065篇
  2016年   6667篇
  2015年   8064篇
  2014年   10803篇
  2013年   16531篇
  2012年   14561篇
  2011年   17361篇
  2010年   14434篇
  2009年   14862篇
  2008年   14442篇
  2007年   14171篇
  2006年   14263篇
  2005年   12698篇
  2004年   9511篇
  2003年   8588篇
  2002年   7592篇
  2001年   7335篇
  2000年   7138篇
  1999年   8341篇
  1998年   14267篇
  1997年   10142篇
  1996年   8315篇
  1995年   6330篇
  1994年   5407篇
  1993年   4797篇
  1992年   3227篇
  1991年   2774篇
  1990年   2438篇
  1989年   2113篇
  1988年   1781篇
  1987年   1289篇
  1986年   1226篇
  1985年   1200篇
  1984年   981篇
  1983年   856篇
  1982年   833篇
  1981年   799篇
  1980年   678篇
  1979年   549篇
  1978年   461篇
  1977年   583篇
  1976年   1022篇
  1975年   326篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
41.
陈晨  李志 《净水技术》2021,40(7):160-163
随着对环保及自用水率的要求日益严格,水厂生产废水的减排已成为发展趋势.但既有水厂用地紧张和生产废水的处理工艺占地多存在矛盾,制约了水厂新增生产废水处理工艺的可行性.文中引入斜管沉淀提升沉淀效率、取消浓缩池、使用叠螺脱水机代替离心脱水机的优化设计方案,相较原设计的传统分离式生产废水处理工艺,生产废水停留时间减少75%,占地面积减少约48%.实践证明,该优化设计方案能够有效解决水厂生产废水处理工艺设计过程中遇到的用地不足问题,并有效地降低建设投资.  相似文献   
42.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
43.
Li4SiO4 crystal is a candidate material for tritium breeder material. Vacancy defects and He atoms will be produced in the crystal after neutron irradiation in fusion reactor. In previous research, we learned vacancy defects mainly include VO0, VO2+, and VLi0, meanwhile, He atoms are easy to migrate and aggregate in the crystal. In order to understand the relationship between vacancy defects and He atoms, we use density functional theory (DFT) to study the interaction mechanism between vacancy and He atom. The results show that the local stable sites of He atoms are related to the surrounding charge distribution. VO2+ and VLi0 can capture interstitial He atoms, and it is difficult to escape the vacancies, thereby increasing the nucleation center of He atoms. VO0 promotes the diffusion of He atoms in the interstitial space, which will cause small helium bubbles to merge more easily.  相似文献   
44.
High purity AlN fiber is a promising thermal conductive material. In this work, AlN fibers were prepared using solution blow spinning followed by nitridation under N2 or NH3 atmosphere. Soluble polymer, such as polyaluminoxane, and allyl-functional novolac resin were adopted as raw materials to form homogeneous distribution of Al2O3 and C nanoparticles within the fibers, which could inhibit the growth of alumina crystal and promote their nitridation process. The effect of nitriding atmosphere on the fiber morphology was investigated. XRD results showed that complete nitridation was achieved at 1300 °C in the NH3 or at 1500 °C in the N2 atmosphere. Hollowed fiber structure was observed when fiber was nitrided in N2 at high temperature, which was caused by gaseous Al gas diffusion, and this phenomenon was eliminated in NH3 atmosphere. The nitridation mechanisms in different atmosphere were analyzed in detail. It was demonstrated that the nitridation of Al2O3 fibers in the NH3 atmosphere offered the favored AlN morphology and chemical quality. Flexible AlN fiber with O content of 0.7 wt% was achieved after nitriding in NH3 at 1400 °C. The high quality AlN can be used in thermal conductive composite materials.  相似文献   
45.
Mitigating gibbsite particle cracking and breakage during industrial alumina production can increase the quality of smelter grade alumina product by reducing the ultrafine particle content. Therefore, it is essential to investigate the particle cracking during static calcination and the breakage of calcined gibbsite particles under external force. In this work, we investigated the impact of the calcination ramping rate and the crystallite size on gibbsite particle cracking during static calcination. A slow ramping rate and a large pristine crystallite size tend to increase particle cracking. Apart from the study of particle cracking behaviour, we also investigated the breakage of calcined gibbsite particle under external force. Cracks on the particle surface can initiate breakage within the crystallite and along the grain boundary under external force. The breakage within crystallite occurs as the cleavage of the crystallite, while the breakage along the grain boundary leads to the shedding of a whole crystallite. We further explored the factors influencing the strength of calcined gibbsite particles. With increasing calcination temperature, the strength of particle increases when gibbsite converts to boehmite, and then decreases when boehmite converts into amorphous alumina. Particles containing smaller crystallites and calcined with fast ramping rates exhibit higher resistance to breakage.  相似文献   
46.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
47.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
48.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   
49.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
50.
Gecko-inspired microfibrillar adhesives have achieved great progress in microstructure design and adhesion improvement over the past two decades. Space applications nowadays show great interest in this material for the characteristics of reversible adhesion and universal van der Waals interactions. However, the impact of harsh environment of space on the performance of microfibrillar adhesives, especially the extreme low temperature, is rarely addressed. Herein, microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane (p-PDMS) elastomers with superior low-temperature reversible adhesion is proposed. p-PDMS elastomers are synthesized through one-pot anionic ring-opening copolymerization, and the resulting elastomers become non-crystallizable with excellent low-temperature elasticity. Low-temperature adhesion tests demonstrate that the adhesion strength of microfibrillar adhesives fabricated by p-PDMS elastomers can be well maintained to as low as −120 °C. In contrast, the adhesion strength of pure PDMS microfibrillar adhesive reduces more than 50% below its crystallization temperature. The low-temperature cyclic adhesion tests further demonstrate that p-PDMS microfibrillar adhesives exhibit superior reversible adhesion compared to that of PDMS microfibrillar adhesives, owing to the sustainable conformal contact and even distribution of loads over repeated cycles. This study provides a new fabrication strategy for microfibrillar adhesives, and is beneficial for the practical application of microfibrillar adhesives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号